

Monte Carlo Geometry Processing

Rohan Sawhney, Keenan Crane Carnegie Mellon University

*certain images that are taken from the authors' paper and video

Review of Last Week

Neural Layered BRDFs

- Parametrize Spatially-varying BRDFs via AutoEncoder
- Predict Consecutive Layering via Neural Network
- Layering is achieved by recursively predict layering effect

Neural Layered BRDFs



Overview

- 1. Motivation
- 2. Methods
- 3. Experiments
- 4. Main Takeaways

1. Motivation

Motivation - PDE is Everywhere!

Rendering

- Wave-based Light Transport
- Quantum Optical Simulation

Animation

- Fluid Simulation
- Sound Propagation
- Sound Synthesis
- Fracture Generation

Modeling

- Shape Deformation
- Physically-based Design

The Famous Interpolation Problem

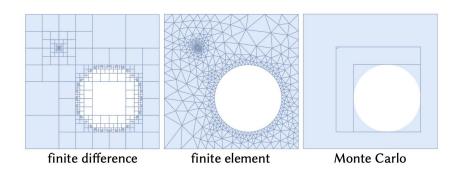
given boundary color

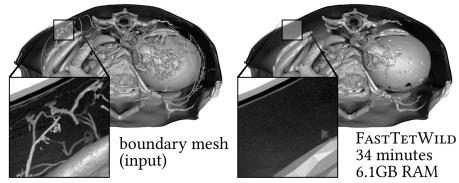
"heat diffuse" from boundary to fill in colors

 $\begin{array}{ll} \Delta u = 0 & \text{ on } \Omega, \\ u = g & \text{ on } \partial \Omega. \end{array}$

Motivation - Previous Approach

can't we just discretize?



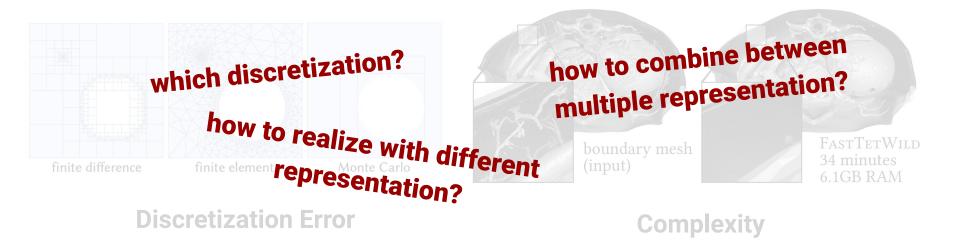


Discretization Error

Complexity

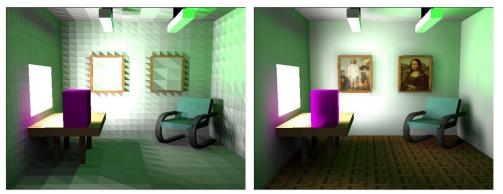
Motivation - Previous Approach

can't we just discretize?



Motivation - Previous Approach

can't we just discretize?



From Donald Fong's slides

Radiosity



Ray Tracing

Motivation - Monte Carlo for PDE

- agnostic to representation
- parallelizable
- easy to implement
- fast convergence
- no precompute
- easy to realize on most PDEs
- unbiased method
- robust to noise, numerically stable
- easy to compute div, grad, curl

2. The Main Idea

Once, there was a parabolic monster ...

$$rac{\partial u}{\partial t}(x,t)+\mu(x,t)rac{\partial u}{\partial x}(x,t)+rac{1}{2}\sigma^2(x,t)rac{\partial^2 u}{\partial x^2}(x,t)-V(x,t)u(x,t)+f(x,t)=0$$

Then a legendary duo appeared with a magical integral sword...

$$rac{\partial u}{\partial t}(x,t)+\mu(x,t)rac{\partial u}{\partial x}(x,t)+rac{1}{2}\sigma^2(x,t)rac{\partial^2 u}{\partial x^2}(x,t)-V(x,t)u(x,t)+f(x,t)=0$$

$$u(x,t)=E\left[\exp(-\int_t^T V(X_ au, au)\,d au)\psi(X_T)+\int_t^T \exp(-\int_t^s V(X_ au, au)\,d au)f(X_s,s)\,ds\,ig|\,X_t=x
ight]$$

Feynman-Kac Theorem

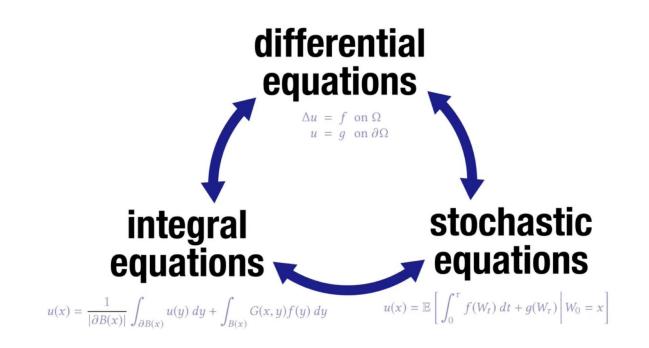
Reducing the parabolic monster into a harmless form

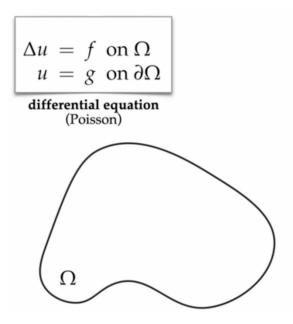
$$dX_t = \mu(X,t)\,dt + \sigma(X,t)\,dW^Q_t$$

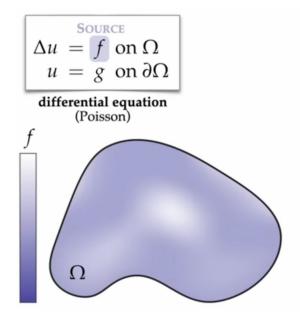
$$u(x,t)=E\left[\exp(-\int_t^T V(X_ au, au)\,d au)\psi(X_T)+\int_t^T \exp(-\int_t^s V(X_ au, au)\,d au)f(X_s,s)\,ds\,ig|\,X_t=x
ight]$$

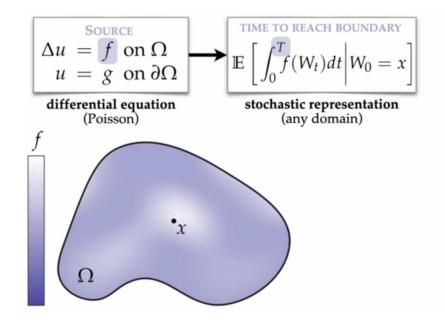
Feynman-Kac Theorem

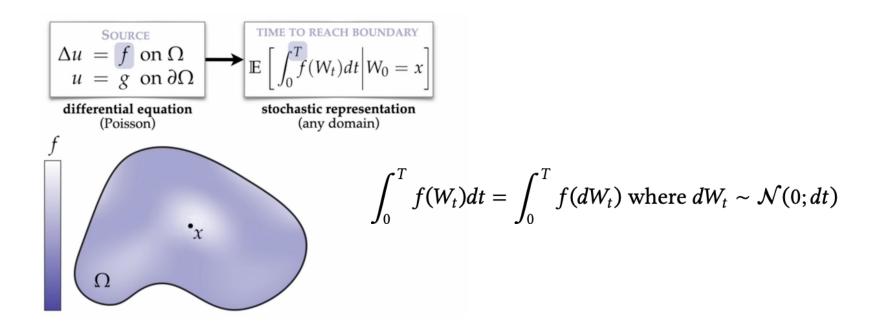
The Cycle continues



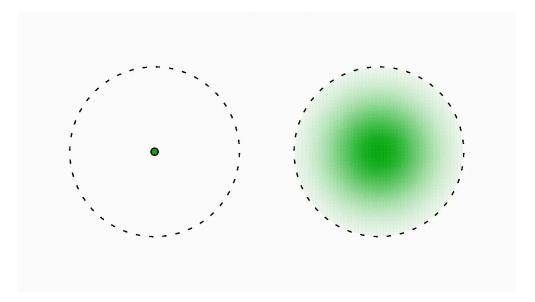




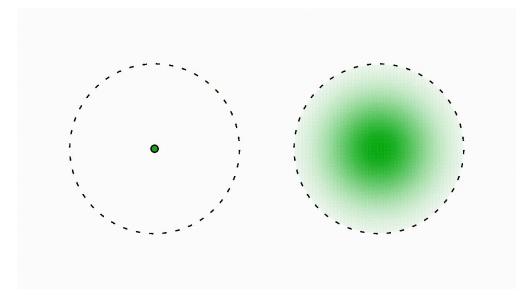




$$\int_0^T f(W_t) dt = \int_0^T f(dW_t) \text{ where } dW_t \sim \mathcal{N}(0; dt)$$



$$\int_0^T f(W_t) dt = \int_0^T f(dW_t) \text{ where } dW_t \sim \mathcal{N}(0; dt)$$

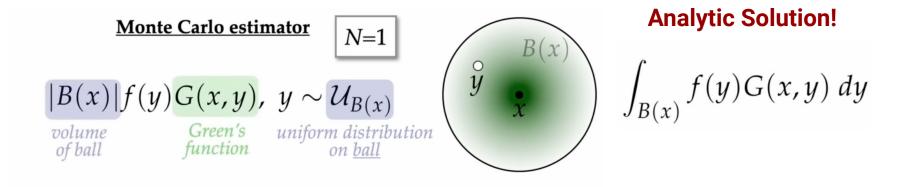


Analytic Solution!

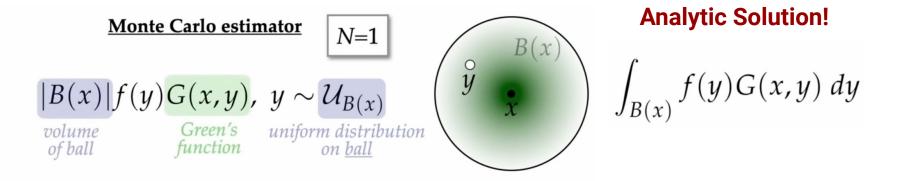
$$\int_{B(x)} f(y) G(x,y) \, dy$$

also known as the Green's Function

$$\int_0^T f(W_t) dt = \int_0^T f(dW_t) \text{ where } dW_t \sim \mathcal{N}(0; dt)$$



$$\int_0^T f(W_t) dt = \int_0^T f(dW_t) \text{ where } dW_t \sim \mathcal{N}(0; dt)$$



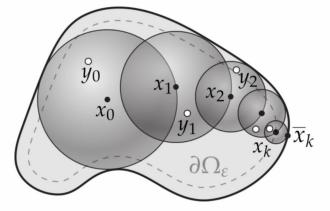
We can solve this in O(1)! (STILL UNBIASED)

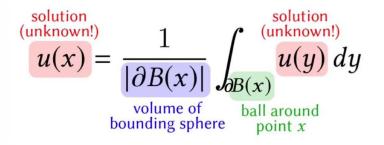
$$\int_0^T f(W_t) dt = \int_0^T f(dW_t) \text{ where } dW_t \sim \mathcal{N}(0; dt)$$

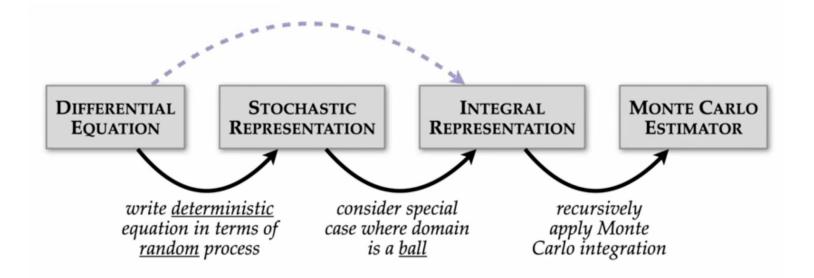
We can solve this in O(1)! (STILL UNBIASED)

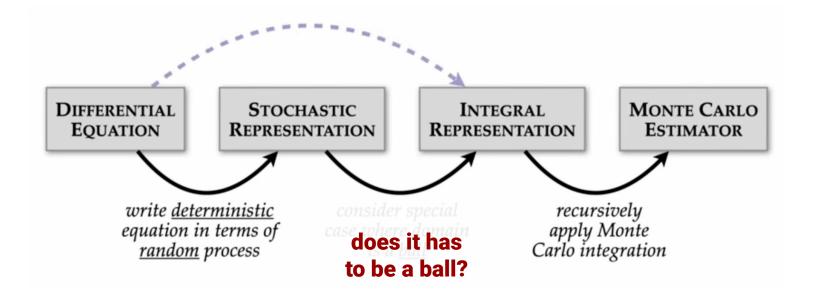
Monte Carlo estimator

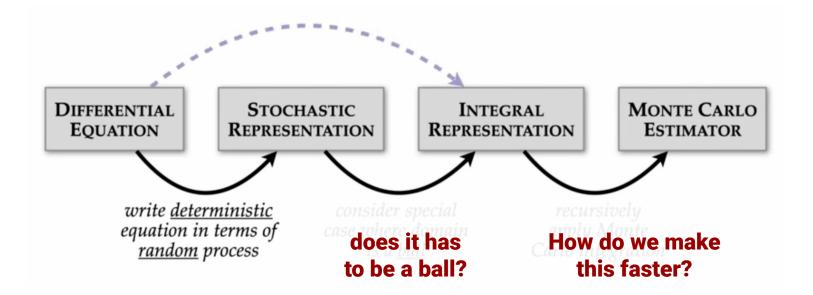
$$\widehat{u}(x_k) = \begin{cases} g(\overline{x}_k), \ x_k \in \partial \Omega_{\varepsilon} \\ \widehat{u}(x_{k+1}) + |B(x_k)| f(y_k) G(x_k, y_k) \\ \text{otherwise} \end{cases}$$

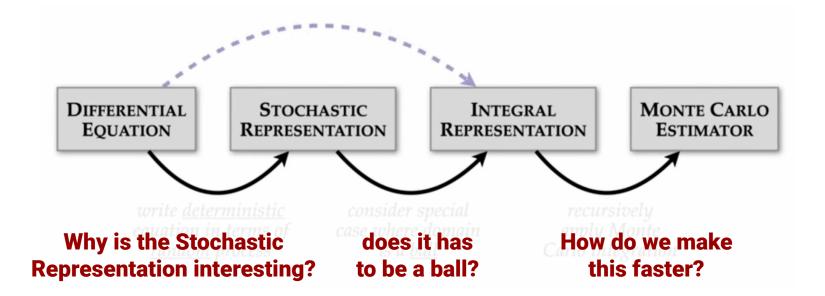


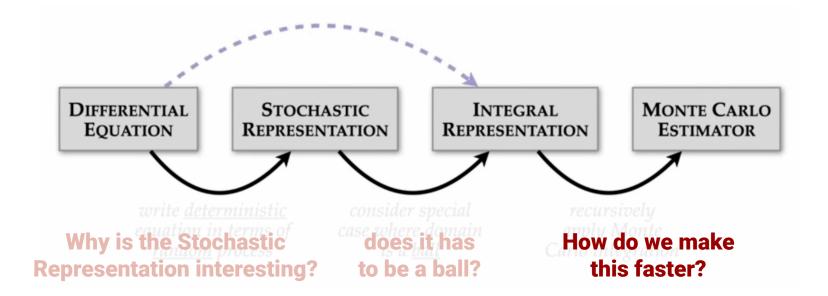




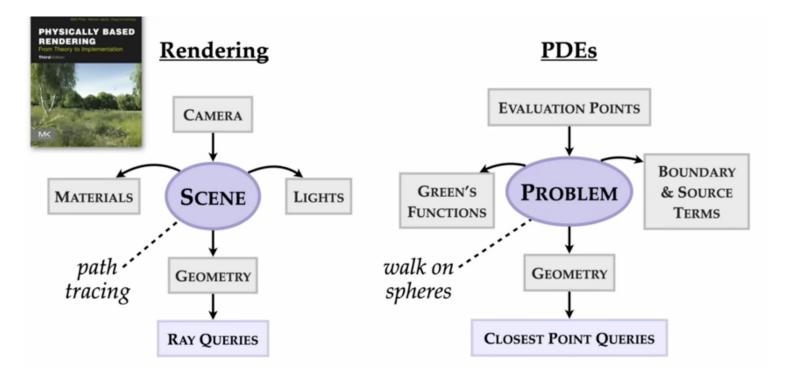




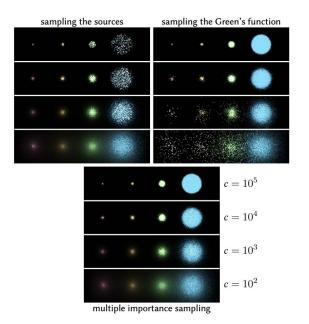


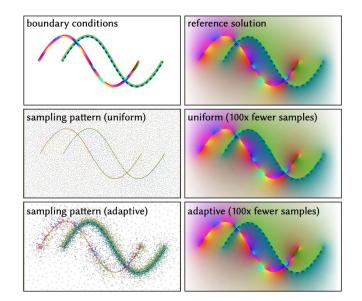


Connection with Ray-Tracing



Ray-Tracing Methods in WOS





multiple importance sampling, control variates

adaptive sampling (sample near boundary)

Ray-Tracing Inspired Techniques on WoS



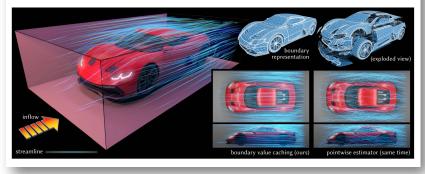
geometry. Unlike conventional methods, the walk on spheres (WoS) algorithm recently introduced to graphics is a grid-free Monte Carlo method that can provide numerical solutions of Poisson equations without discretizing space. We drwa analytics between WoS and classical rendering algorithms, and find that the WoS algorithm is conceptually equivalent to forward path tracing, Inspired by similar approaches in light transport, we propose a novel WoS reformulation that operates in the reverse direction, starting at source points and estimating the Green's function at "sensor" points. Implementations of this algorithms show improvement over classical WoS in solving Poisson equation with sparse sources. Our approach opens exciting avenues for future algorithms for PDE estimation which, analogous to light transport, connect WoS walks starting from sensors and sources and combine different strategies for robust solution algorithms in al cases.

CCS Concepts

 $\bullet \textit{Computing methodologies} \rightarrow \textit{Ray tracing; Modeling and simulation; \bullet \textit{Mathematics of computing}} \rightarrow \textit{Stochastic processes;}$

Boundary Value Caching for Walk on Spheres

BAILEY MILLER*, Carnegie Mellon University, USA ROHAN SAWHNEY*, Carnegie Mellon University and NVIDIA, USA KEENAN CRANE[†], Carnegie Mellon University, USA IOANNIS GKIOULEKAS[†], Carnegie Mellon University, USA



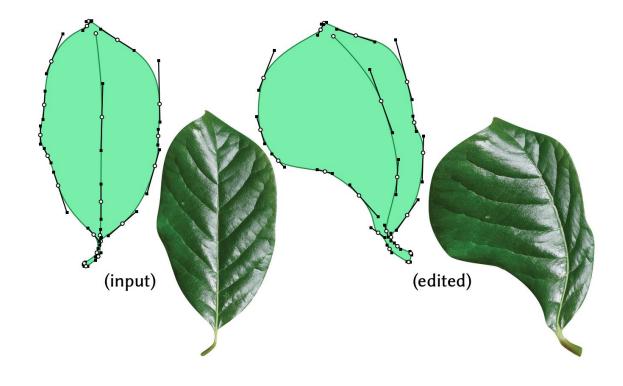
Bidirectional Ray-tracing

Photon Mapping

4. Experiments

Curve Inflation - My Spooky Implementation

Real-time Deformation



FEM vs. WoS on Poisson

methodlinear FEMMonte Carlo#triangles2M10M#samples47k nodes23k pixelsprecompute14 hours0.4 secondssolve13 seconds57 seconds



5. Main Takeaways

There is no Free Lunch! Just discounted Lunch

Pros

- agnostic to representation
- parallelizable
- easy to implement
- fast convergence
- no precompute
- easy to realize on most parabolic and elliptic PDEs
- unbiased method
- robust to noise, numerically stable
- easy to compute div, grad, curl

• hard to realize on hyperbolic PDEs

(eg. Wave Equation, Schrödinger Equation)

- requires bounded domain with Dirichlet (non-reflecting) boundary
- requires analytic form of Green Functions
- yet to handle spatially-varying conditions
- yet to handle time-dependent equation
- only consider volumetric domain

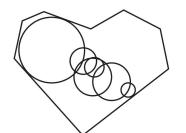
Quiz Time! :D

When performing walk-on-sphere on **bounded domain**. Is there a domain geometry that makes the algorithm never terminate in probability?

 $\lim_{n\to\infty} \mathbb{P}(\text{reaching boundary after } n \text{ walks}) \neq 1$

- (a) True
- (b) False
- (c) Undecidable

Which figure describe the **WRONG** walk-on-sphere algorithm? (there is only one walker)



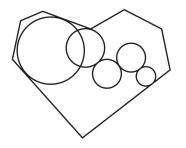


figure A

figure B

- (a) figure A (c)
- (b) figure B

-) both wrong
- (d) both correct