ONYSYA Nguyen Minh Hieu - 20210722

Monte Carlo Geometry Processing

Rohan Sawhney, Keenan Crane
Carnegie Mellon University

*certain images that are taken from the authors’ paper and video

page 1



Review of Last Week

Neural Layered BRDFs
Neural Layered BRDFs il Fen Beibei Wang!

Milo$ Hasan

Nanjing University of Science and Nankai University, Adobe Research
Technology Nanjing University of Science and USA
China Technology
H H H fjh@njust.edu. Chi
- Parametrize Spatially-varying HERRESIS belbelwangpmkal sin
1 Jian Yang® Ling-Qi Yan
B R D FS VI a AUtO E n CO d e r Nanjing University of Science and University of California, Santa
. . . Technology Barbara
- Predict Consecutive Layering China UsA
csjyang@njust.edu.cn linggi@cs.ucsb.edu

ia Neural Network
V I W Rough Dielectric =001, IOR = 145 Ours, 512 spp Guo etal. [2018], 64 spp \\
CPU: 4.53 m CPU: 4.82m A\

- Layering is achieved by y |

Rough Dielectric ar=0.02, I0R = 1.25

recursively predict layering

| bowope edum or-s0 |
ffect T —

Rough Conductor




Overview

1.

2.

Motivation
Methods
Experiments

Main Takeaways




1. Motivation
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Motivation - PDE is Everywhere!

Rendering
- Wave-based Light Transport
- Quantum Optical Simulation

Animation
- Fluid Simulation
- Sound Propagation
- Sound Synthesis
- Fracture Generation

Modeling
- Shape Deformation
- Physically-based Design




The Famous Interpolation Problem

given boundary color

“heat diffuse” from
boundary to fill in colors

Au=0 onQ,
u=g onodQ.




Motivation - Previous Approach

can't we just discretize?

FASTTETWILD
34 minutes
6.1GB RAM

"| boundary mesh
| (input)

finite difference » finite element Monte Carlo

Discretization Error Complexity



Motivati
otivation - Previous Approach

can't we just discretize?

which discretization?
how 10 combine between
multiple representatlon

how
10 realjze with

r
€pr ©Sentation- o




Motivation - Previous Approach

can't we just discretize?

From Donald Fong’s slides

Radiosity Ray Tracing




Motivation - Monte Carlo for PDE

e agnostic to representation

e parallelizable

e easytoimplement

e fast convergence

® no precompute

e easy to realize on most PDEs

e unbiased method

e robust to noise, numerically stable

e easy to compute div, grad, curl




2. The Main Idea
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The Tales of Three Equations

Once, there was a
parabolic monster ...

0%u

) + (e, ) o (2,) + 30 (2,0) g (2,8) — V(@ Oule, 1) + F(z,8) = 0
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The Tales of Three Equations

Then a legendary duo appeared with a
magical integral sword...

0%u

) + (e, ) o (2,) + 30 (2,0) g (2,8) — V(@ Oule, 1) + F(z,8) = 0

u(z,t) =FE [exp(— /tT V(X;,7)dr)yY(Xr) + /tT exp(— /s V(X;,7)dr)f(Xs,s)ds

t

Xt:$:|

Feynman-Kac Theorem




The Tales of Three Equations

Reducing the parabolic monster into a
harmless form

dX; = p(X,t)dt + o(X,t) dWZ

u(z,t) =FE [exp(— /tT V(X;,7)dr)yY(Xr) + /tT exp(— /s V(X;,7)dr)f(Xs,s)ds

t

Xt:$:|

Feynman-Kac Theorem




The Tales of Three Equations

The Cycle continues

)

integral stochastic
equations w___v equations

differential
equations




Walk-on-Sphere - An Example

Au
U

f on Q)
g on d()

differential equation
(Poisson)

Il




Walk-on-Sphere - An Example

Au = f on ()
u = g ono()

differential equation

(Poisson)




Walk-on-Sphere - An Example

Au = fonQ) &
E /f(W,)dt Wo = x
u = g onad() Jo
differential equation stochastic representation
(Poisson) (any domain)

f




Walk-on-Sphere - An Example

Au = fonQ) — &
E f(W[)dt WO =X
u = g ond{) Jo~
differential equation stochastic representation
(Poisson) (any domain)

f
T T
/ FOW,)dt = / £(dW;) where dW, ~ N'(0;dt)
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Walk-on-Sphere - Simple Domain

T T
/ FW,)dt = / F(dW;) where dW, ~ N'(0;dt)




Walk-on-Sphere - Simple Domain

T T
/ FW,)dt = / F(dW;) where dW, ~ N'(0;dt)

Analytic Solution!

Jo fIG ) dy
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Walk-on-Sphere - Simple Domain

T T
/ fW,)dt = / f(dW;) where dW, ~ N'(0;dt)

Analytic Solution!

Jo fIG ) dy

Monte Carlo estimator N=1

[B(x)|f(v)G(x,y), y ~ Up(x)
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Walk-on-Sphere - Simple Domain

T T
/ fW,)dt = / f(dW;) where dW, ~ N'(0;dt)

Analytic Solution!

Jo fIG ) dy

Monte Carlo estimator N=1

[B(x)|f(v)G(x,y), y ~ Up(x)

We can solve this in O(1)!
(STILL UNBIASED)
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Walk-on-Sphere - Simple Domain

T T
/ FW,)dt = / F(dW,) where dW, ~ N'(0;dt)

Can we decompose complex
domain into simple domain?




Walk-on-Sphere - Simple Domain

Monte Carlo estimator

L/l\(xk) _ {g(fk)/ Xk € aQs

U(xg1) + |B(xr) | f(vk) G (xk, vi),
otherwise

Yes!

via Mean Value Theorem

solution
(unknown!)

R —

|
|0B(x)|

volume of
bounding sphere

solution
(unknown!)

u(y) dy
B(x)

ball around
point x
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Walk-on-Sphere - The Big Picture

DIFFERENTIAL STOCHASTIC INTEGRAL MONTE CARLO |
EQUATION REPRESENTATION REPRESENTATION ESTIMATOR
write deterministic consider special recursively
equation in terms of case where domain apply Monte
random process is a ball Carlo integration
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Walk-on-Sphere - The Big Picture

DIFFERENTIAL STOCHASTIC INTEGRAL MONTE CARLO |

EQUATION REPRESENTATION REPRESENTATION ESTIMATOR
write deterministic recursively
equation in terms of apply Monte

does it has

random process
to be a ball?

Carlo integration
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Walk-on-Sphere - The Big Picture

INTEGRAL MONTE CARLO

DIFFERENTIAL STOCHASTIC
EQUATION REPRESENTATION REPRESENTATION ESTIMATOR
. B \

write deterministic
equation in terms of
random process

does it has How do we make
to be a ball? this faster?




Walk-on-Sphere - The Big Picture

DIFFERENTIAL STOCHASTIC INTEGRAL MONTE CARLO
EQUATION REPRESENTATION REPRESENTATION \ ESTIMATOR

Why is the Stochastic does it has How do we make
Representation interesting?  to be a ball? this faster?




Walk-on-Sphere - The Big Picture

DIFFERENTIAL | STOCHASTIC INTEGRAL MONTE CARLO
EQUATION REPRESENTATION REPRESENTATION ESTIMATOR

N N N

How do we make
this faster?




Connection with Ray-Tracing

PHYSICALLY BASED
RENDERING

Rendering
S g B CAMERA
e > N
MATERIALS SCENE LIGHTS
P ath ’ GEOMETRY
tracing l

RAY QUERIES

PDEs

EVALUATION POINTS

!

H

&« BOUNDARY
GrReeN’'s | PROBLEM & SOURCE
FUNCTIONS TERMS
walk on GEOMETRY
spheres l

CLOSEST POINT QUERIES




Ray-Tracing Methods in WOS

sampling the sources sampling the Green’s function

boundary conditions reference solution

N\
.
g N
' 3
' \
¢ )
\ y
\ 4
N 4
o 4
s
S

sampling pattern (uniform) uniform (100x fewer samples)

c=10°

c=10* samplirll‘gzlpbatt;r‘n (adaptive) adaptive (100x fewer samples)
¢c=10° o

c=10?

multiple importance sampling

multiple importance sampling, adaptive sampling
control variates (sample near boundary)




Ray-Tracing Inspired Techniques on WoS

ButograpbicsSymposiam on Rendering 2022 Volume 41 (2022), Nuber 4 Boundary Value Caching for Walk on Spheres
A.Ghosh and LY. Wei

o BAILEY MILLER®, Carnegie Mellon University, USA

ROHAN SAWHNEY", Carnegie Mellon University and NVIDIA, USA
KEENAN CRANET, Carnegie Mellon University, USA

A bidirectional formulation for k on Sph
bidirectional formulation for Walk o S[) eres IOANNIS GKIOULEKAST, Carnegie Mellon University, USA

Yang Qi' Dario Seyb! Benedikt Bitterli' > Wojciech Jarosz'

!Dartmouth College 2NVIDIA

&Y boundary
representation

Abstract

Numerically solving partial differential equations (PDEs) is central to many applications in computer graphics and scientific
modeling. Conventional methods for solving PDES often need to discretize the space first, making them less efficient for complex
geometry. Unlike conventional methods, the walk on spheres (WoS) algorithm recently introduced to graphics is a grid-free
Monte Carlo method that can provide numerical solutions of Poisson equations without discretizing space. We draw analogies
between WoS and classical rendering algorithms, and find that the WoS algorithm is conceptually equivalent to forward path
tracing. Inspired by similar approaches in light transport, we propose a novel WoS reformulation that operates in the reverse
direction, starting at source points and estimating the Green's function at “sensor” points. Implementations of this algorithm
show improvement over classical WoS in solving Poisson equation with sparse sources. Our approach opens exciting avenues for

future d for PDE estimation which, /! to light transport, connect WoS walks starting from sensors and sources

and combine different strategies for robust solution algorithms in all cases.

CCS Concepts :

« Computing methodologies — Ray tracing; Modeling and simulation; » Mathematics of ing — Stochastic processes; streamline boundary value caching (ours) pointwise estimator (same time)

Bidirectional Ray-tracing Photon Mapping
page 33




4. Experiments
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Curve Inflation - My Spooky Implementation

Au =
u=

z=u

—4 on Q
0 on 02

inflation

for (int k = 0; k < MAX WALKS; k++)

if (R < EPS) break;
u += PI*R*R*G(R);

x += R * rand_circ();

R = main_sdf (x);

// terminate at boundary
// evaluate Green function
// random walk

// distance query




Real-time Deformation

(edited)




FEM vs. WoS on Poisson

method
#triangles
#samples
precompute
solve

linear FEM Monte Carlo

2M 10M
47k nodes 23k pixels
14 hours 0.4 seconds

13 seconds 57 seconds
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There is no Free Lunch!

Pros Cons
e agnostic to representation e hard to realize on hyperbolic PDEs
e parallelizable (eg. Wave Equation, Schrodinger Equation)
e easy to implement e requires bounded domain with Dirichlet
e fast convergence (non-reflecting) boundary
e no precompute e requires analytic form of Green Functions
e easy to realize on most parabolic and e yet to handle spatially-varying conditions
elliptic PDEs e yet to handle time-dependent equation
e unbiased method e only consider volumetric domain

e robust to noise, numerically stable

e easy to compute div, grad, curl page 39



Quiz Time! :D

When performing walk-on-sphere on
bounded domain. Is there a domain
geometry that makes the algorithm
never terminate in probability?

lim P(reaching boundary after n walks) # 1

n—>oo

(@ True
(b) False
(c) Undecidable

Which figure describe the WRONG

walk-on-sphere algorithm?

(there is only one walker)

figure A

(@) figure A
(b) figureB

(c)
(d)

figure B

both wrong
both correct
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